Genetic diversity and population structure of the critically endangered Dactylorhiza hatagirea (D. Don) Soo from the northwest Himalayas and implications for conservation

  • Myers, N., Muttermeier, RA, Muttermeier, CA, da Fonseca, ABG & Kent, J. Biodiversity hotspots for conservation priorities. Nature 403853–858 (2000).

    ADS CAS Article Google Scholar

  • Grytnes, JA & Vetaas, OR Species richness and altitude: A comparison between null models and interpolated plant species richness along the altitudinal gradient of the Himalayas. Nepal. A m. Nat. 159, 294–304. https://doi.org/10.1086/338542 (2002).

    PubMed Google Scholar article

  • Samant, et al. Medicinal plants in Himachal Pradesh, North West Himalayas, India. Int. J. Biodivers. Science. Managed. 3234–251 (2007).

    Google Scholar article

  • Kala, CP, Farooquee, NA & Dhar, U. Prioritization of medicinal plants based on available knowledge, existing practices and use value status in Uttaranchal. India. Biol. Conserv. 13453–469 (2004).

    Google Scholar

  • Bhatt, A., Joshi, SK, and Gairola, S. Dactylorhiza hatagirea (D.Don) Soo-an endangered western Himalayan orchid. Running. Science. 89610–612 (2005).

    Google Scholar

  • Agarwal, A., Khokhar, D. & Vishwanath., In vitro propagation conservation of a critically endangered medicinal plant, Dactylorhiza hatagirea (D. Don) Soo. In Wildlife biodiversity conservation (ed. Reddy, MV) 294–299 (Daya Publishing House, 2008).

    Google Scholar

  • Pant, S. & Rinchen, T. Dactylorhiza hatagirea: A valuable medicinal orchid. J.Med. Plants Res. 6(19), 3522–3524 (2012).

    Google Scholar

  • Singh, L. et al. Orchid population status, threats and conservation options Dactylorhiza hatagirea in the Western Indian Himalayas. Reg. About. To change 21(2), 1–16 (2021).

    Google Scholar article

  • Cardinale, BJ et al. The loss of biodiversity and its impact on humanity. Nature 486(7401), 59-66 (2012).

    ADS CAS Article Google Scholar

  • Sharma, S. et al. Characterization of new polymorphic microsatellite markers in Dactylorhiza hatagirea: a critically endangered orchid species from the western Himalayas. Conserv. Broom. Resour. https://doi.org/10.1007/s12686-014-0361-y (2014).

    Google Scholar article

  • Dhiman, N. et al. The de novo transcriptome provides information on the growth behavior and biosynthesis of resveratrol and trans-stilbenes in Dactylorhiza hatagirea – An endangered alpine terrestrial orchid from the western Himalayas. Science. representing 913133. https://doi.org/10.1038/s41598-019-49446-w (2019).

    ADS CAS PubMed Article PubMed Central Google Scholar

  • Warghat, AR et al. Genetic diversity and population structure of Dactylorhizahatagirea (Orchidaceae) in the cold desert region of Ladakh in India. J.Med. Plant Res. 6(12), 2388–2395 (2012).

    CAS Google Scholar

  • Warghat, AR et al. Population genetic structure and conservation of small fragmented localities of Dactylorhizahatagirea in the Ladakh region of India. Scientia Horticulturae 164(2013), 448–454 (2013).

    CAS Google Scholar

  • Chauhan RS et al. Morphobiochemical variability and genetic material selection strategies of Dactylorhiza hatagirea (D. Don) soo: An endangered medicinal orchid. J.Bot. 2014, Item ID 869167, 5 pages. (2014). https://doi.org/10.1155/2014/869167.

  • Sharma, P. & Samant, SS Diversity, distribution and indigenous uses of medicinal plants in the Parbati valley of the Kullu region of Himachal Pradesh, northwest Himalayas. Asian J. Adv. Basic science. 277–98 (2014).

    Google Scholar

  • Singh, Lal, B., Singh, Todaria and Ahuja. (2007). Species richness, distribution pattern and conservation status of higher plants in the cold desert of Spiti, trans-Himalayas, India. Int. J. Biodivers. Science. Manag. 3(4), 223–233.

  • Dhyani, P. et al. Genome-wide discovery of microsatellite markers and inferences of population genetic diversity revealed strong anthropogenic pressure on endemic populations of Trillium govanianum. Ind. Cultures Prod. 154112698 (2020).

    CAS Google Scholar Article

  • Petit, RJ, El Mousadik, A. & Pons, O. Identification of populations to be conserved on the basis of genetic markers. Conserv. Biol. 12(4), 844–855 (1998).

    Google Scholar article

  • Majeed, A., Singh, A. & Bhardwaj, P. Transcribing molecular and climatic data in conservation management of Himalayan threatened species, Taxuscontorta (Griff.). Conserv. Broom. 22(1), 53–66 (2021).

    Google Scholar article

  • Uniyal, SK, Awasthi, A. & Rawat, GS Current Status and Distribution of Commercially Exploited Medicinal and Aromatic Plants in Upper Gori Valley, Kumaon Himalayas, Uttaranchal. Running. Science. 821246–1250 (2002).

    Google Scholar

  • Gamfeldt, L. & Kallstrom, B. Increasing intraspecific diversity increases the predictability of population survival in the face of disturbance. Oikos 116(4), 700–705. https://doi.org/10.1111/j.0030-1299.2007.15382.x (2007).

    Google Scholar article

  • Ellstrand, NC & Elam, DR Population genetic consequences of small population size: Implications for plant conservation. Ann. Rev. School. Evol. System 24217-242 (1993).

    Google Scholar article

  • Wani, IA, Kumar, V., Verma, S., Tasleem Jan, A. & Rather, IA Dactylorhiza hatagirea (D. Don) Soo: A critically endangered perennial orchid from the northwest Himalayas. Plants 9(12), 1644 (2020).

    CAS Google Scholar Article

  • Wang, SQ Genetic diversity and population structure of the endangered Paeoniadecomposita endemic to China and implications for its conservation. BMC factory. Biol. 20(1), 1–14 (2020).

    Google Scholar article

  • Tansley, SA & Brown, CR RAPD variation in the rare and endangered Leucadendronelimense (Proteaceae): implications for their conservation. Biol. Conserv. 9539-48 (2000).

    Google Scholar article

  • Nybom, H. Comparison of different nuclear DNA markers to estimate intraspecific genetic diversity in plants. Mol. School. 13, 1143–1155. https://doi.org/10.1111/j.1365-294X.2004.02141.x (2004).

    CAS PubMed Google Scholar Article

  • Spielman, D., Brook, BW, and Frankham, R. Most species are not driven to extinction until genetic factors affect them. proc. Natl. Acad. Science. 101(42), 15261-15264 (2004).

    ADS CAS Article Google Scholar

  • Grant, V. The evolutionary process: a critical study of evolutionary theory. Standard. Hist. Philos. Science. 1765–98 (1986).

    Google Scholar article

  • Nag, A., Ahuja, PS & Sharma, RK Genetic diversity of high altitude populations of an endangered medicinal plant. AoB plants seven, 15 (2015). https://doi.org/10.1093/aobpla/plu076

    Google Scholar article

  • Doyle, JJ & Doyle, JL Isolation of plant DNA from fresh tissue. To concentrate 12(13), 39–40 (1990).

    Google Scholar

  • Peakall, ROD & Smouse, PE GENALEX 6: genetic analysis in Excel. Population genetics software for education and research. Mol. School. Remarks 6(1), 288–295. https://doi.org/10.1111/j.1471-8286.2005.01155.x (2006).

    Google Scholar article

  • Yeh, FC, Yang, RC & Boyle, T. POPGENE Software Package Version 1.31 for Population Genetic Analysis. University of Alberta, Alberta City, AB, Canada (1999).

  • Excoffier, L. & Lischer, HEL Suite Arlequin ver 3.5: A new series of programs for performing population genetic analyzes under Linux and Windows. Mol. School. Resour. ten, 564–567. https://doi.org/10.1111/j.1755-0998.2010.02847.x (2010).

    PubMed Google Scholar article

  • Glaubitz, JC CONVERT: A user-friendly program for reformatting diploid genotypic data for commonly used population genetics software packages. Mol. School. Remarks 4, 309–310. https://doi.org/10.1111/j.1471-8286.2004.00597.x (2004).

    CAS Google Scholar Article

  • Perrier, X., Flori, A. & Bonnot, F. Methods of data analysis. In Genetic diversity of cultivated tropical plants (eds Hamon, P. et al.) 43–76 (Science Editors, 2003).

    Google Scholar

  • Pritchard, JK, Wen, W. & Falush, D. Documentation for STRUCTURE Software: Version 2 (2003).

  • Evanno, G., Regnaut, S. & Goudet, J. Detection of the number of clusters of individuals using STRUCTURE software: A simulation study. Mol. School. 14(8), 2611–2620. https://doi.org/10.1111/j.1365-294X.2005.02553.x (2005).

    CAS PubMed Google Scholar Article

  • Ellstrand, NC & Elam, DR Population genetic consequences of small population size: implications for plant conservation. Ann. Rev. School. System 24217-242 (1993).

    Google Scholar article

  • Ouborg, NJ, Pertoldi, C., Loeschcke, V., Bijlsma, RK & Hedrick, PW Conservation genetics in transition to conservation genomics. Genet trends. 26177-187 (2010).

    CAS Google Scholar Article

  • Frankham, R., Bradshaw, CJ & Brook, BW Genetics in conservation management: Revised recommendations for 50/500 rules, Red List criteria and population viability analyses. Biol. Conserv. 17056–63 (2014).

    Google Scholar article

  • Yun, SA & Kim, SC Genetic diversity and structure of Saussurea polylepis (Asteraceae) on the Korean mainland: Implications for conservation strategies and management. PLOS ONE 16(4), e0249752 (2021).

    CAS Google Scholar Article

  • Daco, L., Maurice, T., Muller, S., Rossa, J. & Colling, G. Genetic status of the endangered plant species Gladiolus palustris in the western part of its range. Conserv. Broom. 20(6), 1339-1354 (2019).

    CAS Google Scholar Article

  • Ida M. Morgan